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Abstract

Home appliances, such as refrigerators and air conditioners have become connected to

the Internet. These devices are called IoT (Internet of Things) devices. As the number

of IoT devices increases, the risk that these devices become the target of cyberattacks

is increasing. In particular, the operations by attackers become a serious problem. The

operations by attackers may harm users or make users unsafe.

Conventionally, security software and intrusion detection systems (IDSs) are used to

detect attacks. However, anomalous operations are difficult to detect by the method based

on the characteristics of the packets because anomalous operations on IoT devices use the

same protocol as legitimate operations by users. The statistics of the traffic cannot also be

used to detect anomalous operation, because the number of packets required to operate

IoT devices is small. In addition, attackers may operate the IoT devices via malware-

infected smartphones or smart speakers that the users usually use. In this case, even the

source of the operation command cannot be used to detect anomalous operation.

Therefore, methods for detecting anomalous operation of IoT devices have been pro-

posed. Our research team has also proposed a method to detect anomalous operation

based on user behavior. This method models user behavior as a sequence of events, which

includes the operation of IoT devices and other behavior monitored in the home environ-

ment. This method learns the sequences of events for each predefined condition. Then,

this method detects attacks by comparing the current sequences of the events with the

learned sequences.

However, the previous work did not discuss the definition of the condition; the method

was evaluated with the conditions simply defined by the time of day. The previous work
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demonstrated that most of the anomalous operations can be detected even with such

a simple definition of conditions by learning the sequences of events. But the method

cannot detect accurately anomalous operations on the devices that are often used solely.

To distinguish the anomalous operations on such devices from legitimate operations, a

more sophisticated definition of conditions when the devices are operated is required.

In this thesis, we propose a method to detect the anomalous operation of home IoT

devices focusing on the condition. We define the condition based on in-home activities.

Our method defines the states related to the situation of the in-home activities and models

the time series of the situation by a state transition model. Our method learns the state

transition probabilities and the probability to observe sensor values or operate each device

for each state from the monitored data. Then, our method detects anomalous operation

by using the model.

We evaluate our method by using the data obtained in the actual home environment.

The results demonstrate that our method achieves 72.3 % of detection ratio with less than

20.1 % of the misdetection ratio, while the method that defines the conditions by only the

time of day cannot achieve such accurate detection.
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1 Introduction

Home appliances, such as refrigerators and air conditioners have become connected to

the Internet. These devices are called IoT (Internet of Things) devices. The number of

IoT devices is increasing every year [1]. As the number of IoT devices increases, the risk

that these devices become the target of cyberattacks is increasing [2–4]. In fact, many

cyberattacks targeting IoT devices have already been observed.

In particular, the operations by attackers become a serious problem. The operations by

attackers may harm users or make users unsafe [5]. Moreover, Soltan et al. demonstrated

the possibility that the simultaneous operation of many energy-consuming IoT devices can

damage the power grid [6].

Conventionally, security software and intrusion detection systems (IDSs) are used to

detect attacks [7]. They detect attacks based on the characteristics of the packets or

statistics of traffic; they detect attacks by comparing packets with predefined rules or

detecting outliers in observed traffic statistics.

However, anomalous operations are difficult to detect by the method based on the

characteristics of the packets because anomalous operations on IoT devices use the same

protocol as legitimate operations by users. The statistics of the traffic cannot also be used

to detect anomalous operation, because the number of packets required to operate IoT

devices is small. In addition, attackers may operate the IoT devices via malware-infected

smartphones or smart speakers that the users usually use. In this case, even the source of

the operation command cannot be used to detect anomalous operation.

Therefore, methods for detecting anomalous operation of IoT devices have been pro-

posed. Our research team has also proposed a method to detect anomalous operation

based on user behavior [8]. This method models user behavior as a sequence of events,

which includes the operation of IoT devices and other behavior monitored in the home

environment. This method learns the sequences of events for each predefined condition.

Then, this method detects attacks by comparing the current sequences of the events with

the learned sequences.

However, the previous work did not discuss the definition of the condition; the method

was evaluated with the conditions simply defined by the time of day. The previous work
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demonstrated that most of the anomalous operations can be detected even with such

a simple definition of conditions by learning the sequences of events. But the method

cannot detect accurately anomalous operations on the devices that are often used solely.

To distinguish the anomalous operations on such devices from legitimate operations, a

more sophisticated definition of conditions when the devices are operated is required.

In this thesis, we propose a method to detect the anomalous operation of home IoT

devices focusing on the condition. We define the condition based on in-home activities.

In-home activities are closely related to the tendency to use IoT devices. For example,

the cooking stove is often operated in a situation where some of the users are preparing

dinner but are never operated in a situation where all of the users are sleeping.

Our method defines the states related to the situation of the in-home activities and

models the time series of the situation by a state transition model. Then, our method

learns the state transition probabilities and the probability to observe sensor values or

operate each device for each state from the monitored data. Then, our method detects

anomalous operation by using the model; the estimated current state is updated periodi-

cally based on the monitored sensor values and operations, and anomalous operations are

detected base on the estimated state.

We evaluated our method by using the data obtained in the actual home environment.

The data is obtained by installing sensors and recording the time when home appliances

are operated in the actual home environment.

The rest of this thesis is organized as follows. We first present the related work in

section 2. We describe our method to detect anomalous operations in section 3. Then, we

evaluate our method in section 4. Finllay, we conclude this work and discuss future issues

in section 5.
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2 Related Work

2.1 Anomaly Detection Method

Several methods for detecting anomalous operation of IoT devices have been proposed.

Amraoui et al. proposed a security framework that continuously authenticates smart

home users [9]. This method allows only authorized user to control their IoT devices

and preventing them in case of performing abnormal and dangerous control actions. This

method learns a normal operation from the user access log and the usage data of the IoT

device by the One-Class Support Vector Machine (OCSVM). Then, this method detects

anomalous operations by the learned model. Ramapatruni et al. proposed a method

to identify anomalous activities that can occur in a smart home environment by using

an HMM (Hidden Markov Model) [10]. This method creates an HMM from test data

collected from multiple sensors and smart devices. Then it detects anomalous operation

by checking whether the current operation matches the model. However, these methods

focus on modeling a single user, and cannot be applied to the home where multiple users

live. On the other hand, this thesis models the conditions focusing on the state of a home

instead of the state of a user.

Our research team has also proposed a method to detect anomalous operation based

on user behavior [8]. This method models user behavior as a sequence of events, which

includes the operation of IoT devices and other behavior monitored in the home environ-

ment. This method learns the sequences of events for each predefined condition. Then,

this method detects attacks by comparing the current sequences of the events with the

learned sequences. However, the previous work did not discuss the definition of the con-

dition; the method was evaluated with the conditions simply defined by the time of day.

The previous work demonstrated that most of the anomalous operations can be detected

even with such a simple definition of conditions by learning the sequences of events. But

the method cannot detect accurately anomalous operations on the devices that are often

used solely. To distinguish the anomalous operations on such devices from legitimate op-

erations, a more sophisticated definition of conditions when the devices are operated is

required, which is discussed in this thesis.
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2.2 In-Home Activity Identification

This thesis focus on the estimation of conditions of in-home activities. There are several

methods for recognizing human behavior in homes using various sensing devices. Ueda

et al. proposed a method to learn the behavior of the user based on the position infor-

mation of the user in the home, and predict the behavior in the home [11]. They use a

machine learning technique to identify various daily activities in a home from positioning

sensors equipped by inhabitants and power meters attached to appliances. Nakahara et

al. proposed a method for logging micro-motion of in-home daily activity using a mo-

bile robot with Kinect [12]. Those methods accurately identifies in-home activities but

requires additional devices that directly monitor a person such as positioning sensors or

a mobile robot with Kinect. On the other hand, this thesis discusses a method focusing

on activities of home appliances and using a small sensor that only monitors the environ-

ment in a home. If we can use such additional sensors, our method can work with the

existing in-home activity identification methods to improve the accuracy of the detection

of anomalous operations.
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3 Anomaly Detection in Smart Home Networks using Sit-

uation Estimation on In-Home Activities

The usage of home appliances depends on situations. For example, the cooking stove

often used in a situation where some of the users are preparing dinner, but never used in

a situation where all of the users are sleeping. Therefore, we propose a method to detect

anomalous operation focusing on such a situation of in-home activities. In this section,

we first explain the model of home activities used in our method. Then, we explain how

home activities are learned and how anomalous operations are detected.

3.1 Model of In-Home Activities

In this thesis, we model in-home activities by the state transition model. The model is

defined by the states, the state transition probabilities, and the probabilities of operating

devices in each state.

3.1.1 Definition of States

We define the state of in-home activities by a combination of the state of the users and

the state of the devices.

State of the Users The state of the users is defined by the activities of the users in a

home such as a state that all users are out of home, a state that at least one users are at

home and active, a state that all users are sleeping and so on. These states are estimated

from sensors deployed by the users such as a noise sensor.

Hereafter, we denote the number of defined states of the users by l, define the set of

the states of users SU by

SU = (s1, s2, s3, ..., sl) (1)

State of the Device We also define the state of the device whose operations are a

target of anomaly detection. In this method, we define four states for the device;

• sI : in use

• sX : used within TX minutes

11



• sY : within Ty minutes after device operation

• sN : others

That is, the set of the state of the device is

SO = (sI , sX , sY , sN ). (2)

It is difficult to accurately identify the current state; especially the state sX can be

accurately identified after TX minutes by checking whether the device is operated. But

we can easily label the log data by checking the log after TX minutes.

State of Home The state of the home S is defined by combining the state of the user

and the state of the device. That is,

S = SU · SO = (s1sI , s1sX , ..., slsN ) (3)

We construct the state transition model between the states in S.

3.1.2 State Transition Probabilities

In this method, the state transition probability for each pair of states is defined. In this

thesis, we divide time into time slots, and we make a transition to the next state at each

time slot.

The state transition probabilities depend on the time of day. For example, the transi-

tion probability to sleep state during day time is significantly different from that at night.

Therefore, our model includes the definition of state transition probabilities for each time

of day. The transition probability ak(i, j) from the state i to the state j at the kth time

slot in each day is defined by the following equation.

ak(i, j) = P (Sk = j|Sk−1 = i) (4)

where Sk is the state at the time slot k
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3.1.3 Probabilities of Operating Device

This model includes the definition of the probabilities of operating device b(i, n) for each

state. The probability of operating device b(i, n) of device n at state i is defined by

b(i, n) = P (n ∈ xt|St = i). (5)

where xt is the set of devices operated at time slot t.

3.2 How to Learn Model of Home Activities

In this subsection, we explain how to learn the model from the stored log of the home

activities. To learn the model, we first set a label for each time slot in the log. Then, we

calculate the transition probabilities and probabilities of operating devices based on the

labeled log data.

3.2.1 Labeling

We divide the log data into time slots and set a label indicating the state to each time

slot. The state is defined by the combination of the state of users and the state of the

device. That is, the label is set by setting the state of users and the state of device.

Both states are set by the predefined rule. The state of users are set based on the

sensor data according to the predefined rules. The status of the device is set based on the

time the device was operated. For example, the device is operated from tth time slot to

t + nth time slot, we set the state from t − TX
δt th time slot to t − 1 time slot to SX , the

state from tth time slot to t+ n time slot to SI , and the state from t+ n+ 1th time slot

to t+ n+ TY
δt time slot to SY where δt is the length of one time slot.

3.2.2 Calculation of State Transition Probability

The probability of transition from state i to state j at time k is given by the following

equation,

P (Sk+1 = j|Sk = i) =
Nk+1,j

Nk,i
, i, j ∈ S (6)

where Nk,j is the number of time slots in state i at time k in the learning data.
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The time of day of the state transition depends on the day, but a similar state transition

occurs at a similar time of day. Therefore, we calculate ak(i, j), considering the data from

k − TZth time slot to k + TZ time slot for each day. That is,

ak(i, j) =

∑
K−TZ≤m≤K+TZ

P (Sm+1 = j|Sm = i)

Dk
(7)

where Dk is the number of time slots in the training data.

3.2.3 Calculation of Probabilities of Operating Device

The probability b(i, n) of operating the device n at the state i is calculated by

b(i, n) =
∑
k

N
(n)
k,i

Nk,i
(8)

where Nk,i is the number of time slots whose state is i at kth time slot in each day, and

N
(n)
k,i is the number of time slots whose state is i and the device n is operated at kth time

slot.

3.3 Anomalous Operation Detection using Situation Estimation on In-

Home Activities

In our method, we detect anomalous operation by using the learned model. The detection

is based on the probabilities of the state where the device can be operated. In this section,

we denote the probability that the state at the time slot t is estimated as i by αt(i), and

the observed result of device operation at the time slot t by xt.
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Figure 1: Estimated Value Update Flow　

3.3.1 Definition of Initial State

When we start the system, we do not have the information on the current state. Thus,

we initialize α0(i) so that all states have the same probability

α0(i) =
1

C
(9)

where C is the number of states.

3.3.2 State Update

The detection system update the probability of each state α at each time slot by the

following steps.

Estimation by State Transition from Previous State We first update α̂t(i) by un-

sing the learned state transition probability ak(i, j). The esimated current state hat alphat(i)

is obained by

α̂t(i) =
∑
c

αt−1(c)aT (t−1)(c, i) (10)
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where T (t− 1) is a function for obtaining the time of day corresponding to the time slot

t− 1.

Correction Based on Observed Value We correct α̂t(i) by using observation value

xt. xt is defined by the set of operated devices at the time slot t; n ∈ xt if a device n is

operated at time slot t. By this definition, the probability P (xt|St = i) is obtained by

P (xt|St = i) =
∏
n

β(xt, i, n) (11)

where

β(xt, i, n) =


b(i, n) n ∈ xt

1 n /∈ xt

(12)

Then, αt(i) can be estimated by

αt(i) =
P (xt|St = i)α̂t(i)∑
j P (xt|St = j)α̂t(i)

(13)

3.3.3 Detection

The device can be operated at the state SX or SI . Thus, if the device is operated when

the estimated state is SX or SI , the operation can be regarded as legitimate. But if the

device is operated in the other states, the operation is abnormal.

Therefore, our method detect anomalous operations by checking the probability of the

states of SX and SI . That is, we detect anomalous operations at the time slot t if the

following equation is satisfied. {
αt(SX) + αt(SI) ≤ θ (14)
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4 Evaluation

4.1 Data collection

We collected data used to evaluate our method in real homes. To collect data, we con-

structed a system shown in Figure 2. The system is constructed of IoT buttons and an

edge computer. In this system, the edge computer stores the time when a user pushes a

button.

We deployed this system in real homes. Then, we asked the subjects living in the homes

to push the button when the home appliance corresponding to the button is operated.

Then, we obtain the log data stored in the edge computer. Table 1 shows the list of home

appliances whose corresponding buttons are deployed.

Figure 2: Data Collection Environment

In addition, we also deployed environmental sensors in the homes. We used NETATMO

Smart Home Weather Station [13] as the environmental sensors. Table 2 shows the sensor

data obtained from the sensor.
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Table 1: Collected Device Operations

Device/Event Action

Users Position Entry/Exit

Lighting ON/OFF

Air Conditioner Cooling ON/Heating ON/Dry ON/Raise/Lower/OFF

Electric Fan ON/OFF

Heater ON/OFF

Washing Machine ON

Refrigerator OPEN

TV　 ON/OFF

Cooking Stove　 ON/OFF

Microwave ON

Toaster Oven ON

Rice Cooker　 ON

Table 2: Collected Sensor Data

Sensor Data Range Accuracy

Room Temperature 0◦C ∼ 50◦C ±0.5◦C

Humidity 0 ∼ 100% ±3%

Barometric Pressure 260 ∼ 1260mbar ±1mbar

CO2 0 ∼ 5000ppm ±50ppm

Noise 35 ∼ 120dB

In this evaluation, we use the data collected for four months from December 2018 to

March 2019. In this evaluation, we set the length of the time slot to one minute.
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4.2 Settings

4.2.1 Detection Target

In this evaluation, we focus on the cooking stoves; anomalous operations on the cooking

stoves are the target of detection. The cooking stoves are frequently used in a real home.

Moreover, the anomalous operations on cooking stoves cause serious problems such as a

fire.

4.2.2 Labeling Rule

In our method, the rules to label the log data is required to be defined in advance. In this

evaluation, we use the following rules.

• Out of home: All subjects have left and the number of people in the house is zero.

• Sleeping: The state that all members of the home are sleeping. In this evaluation,

this state is defined by the state that at least one subject is at home, the value of

the noise sensor is less than a threshold, and no devices are used within a predefined

time.

• Active: other than the above.

In this evaluation, the target device are cooking stoves operation. The state of devices

is defined as follows.

• Cooking appliances are in use.

• Cooking appliances will be operated within TX minutes

• Within TY minutes after cooking appliances are used

• Other case

The home we collected the dataset has cooking stoves, a microwave oven, an oven

toaster, and a rice cooker. We define the state that cooking appliances are in use by the

state that at least one of the above appliances are used within 15 minutes. Thus, Ty is set

to a large value than 15 minutes.
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The state of the house is defined by the combination of the state of users and the state

of the devices. That is, the states of in-home activity are as follows.

• Outing × Cooking appliances in used

• Outing × Cooking appliances operated within TX minutes

...

• Active × Cooking appliances within Ty minutes after device operation

• Active × Cooking appliances not used

Figure 3 shows the state transition model defined by the above states. In this figure,

the states and transitions that never occur are omitted in.

Figure 3: State Transition Model Used for Evaluation　

4.3 Metrics

In this evaluation, because we have only a limited number of legitimate operations in our

collected data, we use Leave-One-Out Cross-Validation (LOOCV) [14]. LOOCV separates
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a dataset into multiple smaller datasets, trains using the datasets except one of the dataset,

and validates the accuracy by using the excluded dataset as the test data. Then, we

summerize the all results.

In this evaluation, we divide the data into small datasets so that each dataset includes

data for each day. We set one of the small datasets as the test data, and the others as the

training data.

4.3.1 Detection Ratio

In this evaluation, we added anomalous operations of the cooking stoves. Then, we cal-

culate the detection rate of them. One anomalous operation is added for each time slot.

Then, we count the anomalous operations detected by our method. We define the detec-

tion rate by the ratio of the number of detected anomalous operations to the number of

added anomalous operations.

4.3.2 Misdetection Ratio

We define the misdetection ratio by the raio of the number of mistakenly detected legiti-

mate operations to the number of legitimate operations.

4.4 Compared Method

In this thesis, we focus on the estimation of in-home conditions. To demonstrate the

effectiveness of our estimation for the detection of anomalous operations, we compare our

method with the method that defines the condition by only the time of day.

We also discuss the impact of the parameters of our method, TX , TY , and TZ . More-

over, we discuss the importance of correction of the estimated states using the monitored

value. To discuss the above point, we also compare our method with the method that does

not use the monitored information to estimate the current state. That is, this method

uses only the state transition probabilities.
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4.5 Result

Figure 4 compares the results of our method with those of the method defining the condi-

tions by only the time of day. In this evaluation, we set the parameters of our method by

TX = 30, TY = 30, and TZ = 30. This figure compares the method by an ROC (Receiver

Operatorating Characteristic) curve. .

Figure 4: Comparison with Time Only Method

The results shows that our method detect anomalous operations more accurately than

the mothod defining the conditions by the time of day. This is because our method

accurately estimates the state that cooking stoves tend to be used.

We also evaluate the impact of parameters of our method.
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Figure 5 shows the impact of parameter TX . In this figure, TX is set to 0, 5, and 60,

where TY = 30 and TZ = 30. Note that the case of TX = 0 is the case that the state of

the time before using the cooking appliances does not exist.

Figure 5: Comparison ROC Curves of Existing Studies at TX

The results indicate that TX does not have a large impact on the detection of anomalous

operations. If TX is set to short, the probability of the state SX becomes also small. But

even in such a case, by setting the threshold θ to a small value, we can achieve a similar

detection performance.

We also compare the impact of TX on the method using only the state transition

model. The results indicate that the detection rate of the method using only the state
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transition model is significantly smaller than our method. That is, the correction of the

estimated states based on the observed information is required to accurately estimate the

state. This figure also indicates the correction of the estimated states also mitigates the

impact of TX .

We also investigate the impact of TY . We set TY to 0, 30, and 180, where TX = 30

and TZ = 30. Figure 6 shows the results.

Figure 6: Comparison ROC Curves of Existing Studies at TY

Similar to TX , TY does not have a large impact on detection performance. We also

compare the impact of TY on the method using only the state transition model. The

results show that TY does not have a large impact even on the method using only the state

24



transition probabilities. This is because the difference between SY and SN is small. As a

result, the state SY does not have an impact on the detections of anomalous operations. If

we can clearly distinguish SY from SN by adding more sensors and so on, SY may become

important.

Finally, we investigate the impact of TZ . We set TZ to 30, 60, and 720, where TX = 30

and TY = 30. Note that the case of TZ = 720 is the case that we do not divide the state

transition probabilities by the time of day. Figure 7 shows the results.

Figure 7: Comparison ROC Curves of Existing Studies at TZ

Similar to TX and TY , TZ does not have a large impact on detection performance.

We also compare the impact of TZ on the method using only the state transition model.
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Simialr to TX , the results indicate that the correction of the estimated states mitigates

the impact of TZ .

4.6 Discussion

The results in the previous subsection indicates that our method achieves higher detection

rate than the method defining the condition by only the time of day. This is because our

method accurately estimates the state that cooking stoves tend to be used.

In addition, the impact of the correction of the estimated states based on the monitored

information has a large impact on the accurate detection of the anomalous operations. This

is because the number of states of home to be estimated is small. The state of the home

does not change frequently. As a result, the state transition probabilities are estimated as

small values. This is why the impact of the correction of the estimated states is larger than

that of the state transition. If we can define the states of home in more fine granularity,

the number of states becomes large and the state transition probabilities from a state to

another state may be large. In this case, the state transtion probabiites becomes more

important.

The accuracy of the sensors has also impact on the accuracy of the detection. In our

evaluation, the state of sleeping is defined by the values of the noise sensor. However, this

definition may cause the labeling errors; if the users are active but the noise level is small,

we mistakenly label the case as sleeping. Such labeling errors may have an impact on the

detection performance. If we have sensors that are used to accurately estimate the state

of users, our method can achieve more accurate detection.
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5 Conclusion and Future Work

In this thesis, we proposed a method to detect the anomalous operation of home IoT

devices focusing on the condition. Our method defines the states related to the situation

of the in-home activities and models the time series of the situation by a state transition

model. Then, our method learns the state transition probabilities and the probability to

observe sensor values or operate each device for each state from the monitored data.Then,

our method detects anomalous operation by using the model.

We evaluated our method by using the data obtained in the actual home environment.

The results demonstrate that our method achieves 72.3 % of detection ratio with less than

20.1 % of the misdetection ratio, while the method that defines the conditions by only the

time of day cannot achieve such accurate detection.

This thesis focuses on the estimation of the condition of the home. But another model

such as sequences of the operations can be used for the detection of anomalous operations.

The combination of our method and such methods may achieve more accurate detection

of the anomalous operations, which is one of our future research topics.
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